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We discuss the Crank–Nicolson and Laplace modified alternating direction implicit
Legendre and Chebyshev spectral collocation methods for a linear, variable coefficient,
parabolic initial-boundary value problem on a rectangular domain with the solution sub-
ject to non-zero Dirichlet boundary conditions. The discretization of the problems by the
above methods yields matrices which possess banded structures. This along with the use
of fast Fourier transforms makes the cost of one step of each of the Chebyshev spectral
collocation methods proportional, except for a logarithmic term, to the number of the
unknowns. We present the convergence analysis for the Legendre spectral collocation
methods in the special case of the heat equation. Using numerical tests, we demonstrate
the second order accuracy in time of the Chebyshev spectral collocation methods for gen-
eral linear variable coefficient parabolic problems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We consider the parabolic initial-boundary value problem
ut þ ðL1 þ L2Þu ¼ f ðx; y; tÞ; ðx; y; tÞ 2 X� ½0; T�; ð1:1Þ
uðx; y; 0Þ ¼ g1ðx; yÞ; ðx; yÞ 2 X; ð1:2Þ
uðx; y; tÞ ¼ g2ðx; y; tÞ; ðx; y; tÞ 2 @X� ½0; T�; ð1:3Þ
where X ¼ ð�1;1Þ � ð�1;1Þ; @X is the boundary of X,
L1u ¼ �a1ðx; y; tÞuxx þ b1ðx; y; tÞux þ cðx; y; tÞu; ð1:4Þ
L2u ¼ �a2ðx; y; tÞuyy þ b2ðx; y; tÞuy; ð1:5Þ
and
0 < amin 6 a1ðx; y; tÞ; a2ðx; y; tÞ 6 amax; ðx; y; tÞ 2 X� ½0; T�: ð1:6Þ
The given functions a1; b1; c; a2; b2; f ; g1, and g2 are assumed to be continuous on X� ½0; T�; X, and @X� ½0; T�,
respectively.

The operators L1 and L2 of (1.4) and (1.5) are given in non-divergent forms which are common for collocation methods. The
operators L1 and L2 in divergent forms, which are common in finite element Galerkin methods, can be put in non-divergent
forms using differentiation.
. All rights reserved.

x: +1 303273 3875.
ki), frutos@mac.uva.es (J. de Frutos).

http://dx.doi.org/10.1016/j.jcp.2010.03.033
mailto:bbialeck@mines.edu
mailto:frutos@mac.uva.es
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


B. Bialecki, J. de Frutos / Journal of Computational Physics 229 (2010) 5182–5193 5183
Alternating direction implicit (ADI), splitting and fractional-step methods have been extensively studied and used in con-
junction with finite difference, finite element, and spline collocation discretizations of parabolic problems (see [16,20,12,4]
and references therein). The purpose of this paper is to consider an application of basic ADI schemes in conjunction with
spectral collocation to the solution of (1.1)–(1.6). Specifically, we use Legendre and Chebyshev spectral collocation for spatial
discretization. For time discretization we use the Crank–Nicolson (CN) ADI scheme and the Laplace modified (LM) ADI
scheme. With an appropriate choice of basis functions for Legendre and Chebyshev spectral collocation, the matrices arising
in the CN ADI and LM ADI schemes are banded. Moreover, the application of fast Fourier transforms (FFTs) renders the CN
ADI and LM ADI Chebyshev spectral collocation schemes computationally very efficient. Specifically, the cost of each of the
Chebyshev schemes is proportional, except for a logarithmic term, to the number of unknowns, where the cost of a scheme is
the number of required arithmetic operations.

Although in this paper X is a square, the proposed methods can be extended (cf. [5]) to the case in which X is a union of
rectangles. Using extrapolation it is also possible to include in (1.1) a term involving uxy and extend the methods to nonlinear
differential equations (cf. [5]).

The outline of this paper is as follows. In the next section, we establish terminology, notation and also discuss the banded
structure of the resulting collocation matrices and the application of FFTs. The CN ADI and LM ADI spectral collocation
schemes are formulated in Sections 3 and 4, respectively. The convergence analysis for both the CN ADI and LM ADI Legendre
spectral collocation schemes for the heat equation is presented in Section 5. Finally, the results of some numerical tests for
the CN ADI and LM ADI Chebyshev spectral collocation schemes are presented in Section 6.
2. Preliminaries

For a positive integer N, let PN be the space of polynomials of degree 6 N on ½�1;1�, and let P0
N be the subspace of PN con-

sisting of all v 2 PN such that vð�1Þ ¼ 0. In the case of Legendre spectral collocation, the basis fqkðxÞg
N�1
k¼1 for P0

N consists of
the functions qkðxÞ defined by (see [21,6])
qkðxÞ ¼ ck½Lk�1ðxÞ � Lkþ1ðxÞ�; k ¼ 1; . . . ;N � 1; ð2:1Þ
where LkðxÞ is the Legendre polynomial of degree k and the normalization constants ck are given by
ck ¼ ð4kþ 2Þ�1=2
; k ¼ 1; . . . ;N � 1:
In the case of Chebyshev spectral collocation, the functions qkðxÞ are defined by (see [8])
qkðxÞ ¼ ð1� x2ÞTk�1ðxÞ; k ¼ 1; . . . ;N � 1; ð2:2Þ
where TkðxÞ ¼ cosðk cos�1 xÞ is the Chebyshev polynomial of degree k.
Let G ¼ fnigN�1

i¼1 and fwigN�1
i¼1 be the sets of interior nodes and weights, respectively, of the ðN þ 1Þ-point Legendre or Cheby-

shev Gauss–Lobatto quadrature on ½�1;1�. A procedure for computing the Legendre nodes and weights can be found in [2]
while the Chebyshev interior nodes and weights are give by (see (4.3.12) and (4.3.13) in [18])
ni ¼ cos
ip
N
; wi ¼

p
N
; i ¼ 1; . . . ;N � 1: ð2:3Þ
We define the ðN � 1Þ � ðN � 1Þ collocation matrices
A ¼ �q00kðniÞ
� �N�1

i;k¼1; B ¼ ðqkðniÞÞN�1
i;k¼1; C ¼ q0kðniÞ

� �N�1
i;k¼1; ð2:4Þ
where i and k are the row and column indices, respectively. We introduce the matrices
W ¼ diagðw1; . . . ;wN�1Þ; A0 ¼ BT WA; B0 ¼ BT WB; ð2:5Þ
and write A0 and B0 as A0 ¼ a0k;l
� �N�1

k;l¼1
and B0 ¼ b0k;l

� �N�1

k;l¼1
. In the case of the Legendre nodes and weights, it is known that (see

[21,6]) A ¼ I0 while B0 is symmetric, pentadiagonal with zeros on the first super-diagonal. Moreover, the non-zero entries of B0

are given by (see [21,6])
b0k;k ¼ 4c2
k

2kþ 1
ð2k� 1Þð2kþ 3Þ ; k ¼ 1; . . . ;N � 2; b0N�1;N�1 ¼ 6c2

N�1
N � 1

ð2N � 3ÞN ;

b0k;kþ2 ¼ �ckckþ2
2

2kþ 3
; k ¼ 1; . . . ;N � 3:
In the case of the Chebyshev nodes and weights, it is shown in [8] that A0 is nonsymmetric, pentadiagonal with zeros on the
first super- and sub-diagonals, while B0 is symmetric, enneadiagonal with zeros on the first and third super-diagonals. More-
over, the non-zero entries of A0 and B0 are given by (see [8])
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a01;1 ¼ p; a0k;k ¼ ðk
2 � 2kþ 3Þp=4; k ¼ 2; . . . ;N � 1;

a0k;kþ2 ¼ �ðk
2 � kÞp=8; k ¼ 1; . . . ;N � 3;

a03;1 ¼ �p=2; a0k;k�2 ¼ �ðk
2 � 3kþ 2Þp=8; k ¼ 4; . . . ;N � 1;

b01;1 ¼ 3p=8; b01;3 ¼ b03;1 ¼ �p=4; b01;5 ¼ b05;1 ¼ p=16;

b02;2 ¼ p=16; b02;4 ¼ b04;2 ¼ �3p=32; b03;3 ¼ 7p=32;

b0k;k ¼ 3p=16; k ¼ 4; . . . ;N � 2; b0N�1;N�1 ¼ 7p=32;

b0k;kþ2 ¼ b0kþ2;k ¼ �p=8; k ¼ 3; . . . ;N � 3;

b0k;kþ4 ¼ b0kþ4;k ¼ p=32; k ¼ 2; . . . ;N � 5:
We introduce
q0ðxÞ ¼
1� x

2
; qNðxÞ ¼

1þ x
2

:

Then fqkðxÞg
N
k¼0 is a basis for PN . We define the ðN � 1Þ � ðN þ 1Þ collocation matrices
eA ¼ �q00kðniÞ
� �N�1;N

i¼1;k¼0;
eB ¼ ðqkðniÞÞN�1;N

i¼1;k¼0;
eC ¼ q0kðniÞ

� �N�1;N
i¼1;k¼0: ð2:6Þ
Using (2.4) and (2.6), and adopting Matlab notation, we have
A ¼ eAð:;1 : N � 1Þ; B ¼ eBð:;1 : N � 1Þ; C ¼ eCð:;1 : N � 1Þ: ð2:7Þ
For a positive constant j, we consider a linear system
ðeB þ jeAÞ½v0; . . . ;vN�T ¼ p; where v0; vN are given: ð2:8Þ
It follows from (2.7) that (2.8) reduces to the system
ðBþ jAÞv ¼ q; v ¼ ½v1; . . . ;vN�1�T : ð2:9Þ
Multiplying (2.9) by BT W and using (2.5), we obtain the equivalent system
ðB0 þ jA0Þv ¼ BT Wq; ð2:10Þ
where A0 and B0 are banded matrices in both the case of Legendre and Chebyshev spectral collocation. In the remaining part of
this section we assume that the qk and ni; wi are given by (2.2) and (2.3), respectively. Then the cost of computing the right-
hand side of (2.10) is OðN log NÞ since, as explained in [7, Appendix C], the FFT routines cosqf and sinqf of [23] can be used
to multiply a vector by BT . Assuming that N is even, and taking advantage of the structures of the matrices A0 and B0, we see
that (2.10) splits into two linear systems. The first of these systems, for the N=2 odd coefficients v1;v3; . . . ;vN�1, involves the
odd parts A0o and B0o of the matrices A0 and B0, respectively. The second system, for the N=2� 1 even coefficients
v2;v4; . . . ;vN�2, involves the even parts A0e and B0e of the matrices A0 and B0, respectively. In the case of odd N, we have
ðN � 1Þ=2 odd coefficients v1;v3; . . . ;vN�2 and ðN � 1Þ=2 even coefficients v2; v4; . . . ;vN�1. The matrices A0o; A0e are nonsym-
metric and tridiagonal, while B0o; B0e are symmetric and pentadiagonal. Thus (2.10) reduces to two pentadiagonal linear sys-
tems, each of which can be solved at a cost OðNÞ. Hence the cost of solving (2.8) is OðN log NÞ.

In addition to (2.8), we consider the more general linear system
eB þ jD1
eA þ D2

eC þ D3
eB� �
½v0; . . . ;vN �T ¼ p; where v0; vN are given; ð2:11Þ
where j > 0 and D1; D2; D3 are ðN � 1Þ � ðN � 1Þ diagonal matrices with positive diagonal entries in the case of D1. It follows
from (2.7) that (2.11) reduces to the system
ðBþ jD1Aþ D2C þ D3BÞv ¼ q; v ¼ ½v1; . . . ;vN�1�T : ð2:12Þ
This system can be solved using a preconditioned iterative method, for example, the preconditioned BICGSTAB [24] or
GMRES [19] with the matrix Bþ jA as a preconditioner. (In the following, we concentrate on BICGSTAB since BICGSTAB is
less expensive than GMRES and since in our numerical tests BICGSTAB was as accurate as GMRES for a given number of iter-
ations.) As explained in [7, Appendix D], the multiplication of a vector by the matrix B, A, or C can be carried out, at a cost
OðN log NÞ, using the FFT subroutines cosqf and sinqf of [23]. A linear system with Bþ jA can be solved efficiently (see
(2.9) and the discussion following it). It should be noted that FFTs are not applicable in the case of Legendre collocation.
Therefore in this case, the cost of multiplying a vector by the matrix BT ; B; A, or C is OðN2Þ assuming that each of these mul-
tiplications is carried out directly.

For an integer M P 2, let ftngM
n¼0 be a partition of ½0; T� such that tn ¼ ns, where s ¼ T=M. For a function / defined on

ftngM
n¼0, we use the following notation throughout the paper:
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/n ¼ /ðtnÞ; @t/
n ¼ /nþ1 � /n; ~@t/

n ¼ /nþ1 � /n�1

2s
; @2

t /
n ¼ /nþ1 � 2/n þ /n�1:
For n ¼ 0; . . . ;M; Ln
1 and Ln

2 denote the differential operators given by (1.4) and (1.5), respectively, with t ¼ tn. For
n ¼ 0; . . . ;M � 1, we set tnþ1=2 ¼ tn þ s=2 and use Lnþ1=2

1 and Lnþ1=2
2 to denote the differential operators given by (1.4) and

(1.5), respectively, with t ¼ tnþ1=2.

3. CN ADI scheme

The second order accurate in time spectral collocation CN ADI scheme (cf. (3.1)–(3.2) in [4] and (33)–(34) in Section 5 of
Chapter 9, along with the comments in the middle of p. 555, in [20]) consists of finding Un 2 PN � PN; n ¼ 1; . . . ;M, such that
for n ¼ 0; . . . ;M � 1,
Unþ1=2 � Un

0:5s
þ Lnþ1=2

1 Unþ1=2 þ Lnþ1=2
2 Un

" #
ðnÞ ¼ f nþ1=2ðnÞ; n 2 G � G;

Unþ1 � Unþ1=2

0:5s
þ Lnþ1=2

1 Unþ1=2 þ Lnþ1=2
2 Unþ1

" #
ðnÞ ¼ f nþ1=2ðnÞ; n 2 G � G;

ð3:1Þ
where
f nþ1=2ðnÞ ¼ 1
2

f nðnÞ þ f nþ1ðnÞ
� �

; n 2 G � G; ð3:2Þ
U0 2 PN � PN; Unj@X; n ¼ 1; . . . ;M, are assumed to be given, and where for each n 2 G; Unþ1=2ð�; nÞ 2 PN and
Unþ1=2ða; nÞ ¼ ð1=2ÞðUnþ1 þ UnÞ þ ðs=4ÞLnþ1=2
2 ðUnþ1 � UnÞ

h i
ða; nÞ; a ¼ �1: ð3:3Þ
The functions U0 2 PN � PN; Unj@X; n ¼ 1; . . . ;M, can be prescribed by interpolating (collocating) the initial and boundary
conditions (1.2) and (1.3), that is, we require that
U0ðnÞ ¼ g1ðnÞ; n 2 G � G; ð3:4Þ
and that for n ¼ 0; . . . ;M; a; b ¼ �1, and n 2 G,
Unða; bÞ ¼ gn
2ða;bÞ; Unða; nÞ ¼ gn

2ða; nÞ; Unðn;bÞ ¼ gn
2ðn; bÞ: ð3:5Þ
The right-hand sides in (3.1) can be replaced with f ðn; tnþ1=2Þ. In fact, if in place of (1.1) we have
ut þ ðL1 þ L2Þuþ dðx; y; tÞuxy ¼ f ðx; y; t;uÞ; ðx; y; tÞ 2 X� ½0; T�;
then, using extrapolation, the right-hand sides in (3.1) are replaced with (cf. [10,22,5])
f ðn; tnþ1=2; eUnþ1=2ðnÞÞ � dðn; tnþ1=2ÞeUnþ1=2
xy ðnÞ;
where
eUnþ1=2 ¼ 3
2

Un � 1
2

Un�1; n ¼ 1; . . . ;M � 1:
For n ¼ 0, the approximation eU1=2 2 PN � PN can be obtained using Taylor’s theorem and (1.2).
An alternative to (3.1)–(3.3) is (cf. (3.41)–(3.42) in [3] and (33)–(34) in Section 5 of Chapter 9 in [20])
Unþ1=2 � Un

0:5s
þ Lnþ1=2

1 Unþ1=2 þ Ln
2Un

" #
ðnÞ ¼ f ðn; tnþ1=2Þ; n 2 G � G;

Unþ1 � Unþ1=2

0:5s
þ Lnþ1=2

1 Unþ1=2 þ Lnþ1
2 Unþ1

" #
ðnÞ ¼ f ðn; tnþ1=2Þ; n 2 G � G;

ð3:6Þ

Unþ1=2ða; nÞ ¼ ð1=2ÞðUnþ1 þ UnÞ þ ðs=4ÞðLnþ1
2 Unþ1 � Ln

2UnÞ
h i

ða; nÞ; a ¼ �1; ð3:7Þ
which is obtained by replacing Lnþ1=2
2 in the first and second equations of (3.1) with Ln

2 and Lnþ1
2 , respectively, and by replacing

Lnþ1=2ðUnþ1 � UnÞ in (3.3) with Lnþ1
2 Unþ1 � Ln

2Un. In the case of finite difference spatial discretization, it is stated in [20] that the
finite difference correction term corresponding to ðs=4Þ Lnþ1

2 Unþ1 � Ln
2Un

� �
in (3.7) can be dropped without affecting the sec-

ond order accuracy in time. A similar comment at the bottom of p. 370 in [13] (see also [14]) seems to suggest that the cor-
rection term improves the accuracy of the method (not necessarily its order) since it only reduces the error constant.

The schemes (3.1)–(3.3) and, (3.6) and (3.7) can be viewed as generalizations of the well-known Peaceman–Rachford
method proposed in [17] for the heat equation and finite difference spatial discretization. For the time-independent opera-
tors L1 and L2, the schemes (3.1)–(3.3) and, (3.6) and (3.7) coincide. For the time-independent L1 and L2, the scheme (3.1)
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with spectral collocation at the Legendre Gauss–Lobatto points was considered in [1] in a more complicated form, the so-
called fractional step Runge–Kutta form. Also in [1], formulas, more complicated than those in (3.3), were suggested for
obtaining the boundary values of the intermediate approximation Unþ1=2 in order to avoid the so-called order reduction com-
monly associated with Runge–Kutta methods. A new scheme which is second order accurate in time, also based on fractional
step Runge–Kutta methods, was proposed recently in [15] for time dependent L1 and L2. Again, the scheme of [15], which
requires modifications to avoid order reduction, appears to be more complicated than our scheme (3.1)–(3.3).

The implementation of the scheme (3.1)–(3.3) is similar to that of the corresponding orthogonal spline collocation CN ADI
scheme (see Section 5 of [4]). For example, the two equations in (3.1) can be rewritten in the form
I þ ðs=2ÞLnþ1=2
1

h i
Unþ1=2ðnÞ ¼ ðs=2Þf ðn; tnþ1=2Þ þ VnðnÞ; n 2 G; ð3:8Þ

I þ ðs=2ÞLnþ1=2
2

h i
Unþ1ðnÞ ¼ 2Unþ1=2ðnÞ � VnðnÞ; n 2 G; ð3:9Þ
where
VnðnÞ ¼ I � ðs=2ÞLnþ1=2
2

h i
UnðnÞ; n 2 G: ð3:10Þ
In the remaining part of this section we discuss in more detail the implementation of (3.8)–(3.10) and its cost in the case
of Chebyshev spectral collocation. (The discussion is similar for Legendre spectral collocation with the term log N replaced
by N.) First, for each i ¼ 1; . . . ;N � 1, using (3.10) and the representation of Unðni; yÞ; y 2 ½�1;1�, in terms of
qlðyÞ; l ¼ 0; . . . ;N, we compute Vnðni; njÞ; j ¼ 1; . . . ;N � 1. For each i this computation involves multiplications of a vector
by the matrices A; B; C of (2.4) and hence (see the discussion in Section 2) its cost is OðN log NÞ. Thus the cost of comput-
ing VnðnÞ; n 2 G, is OðN2 log NÞ. Then, for each j ¼ 1; . . . ;N � 1, using (3.8) and (3.3), we compute the representation of
Unþ1=2ðx; njÞ; x 2 ½�1;1�, in terms of qkðxÞ; k ¼ 0; . . . ;N. For each j, this computation involves solving a linear system of
the form (2.11) and hence it can be done using the preconditioned BICGSTAB method (see the discussion following
(2.11)). In a similar way, for each i ¼ 1; . . . ;N � 1, using (3.9), we compute the representation of Unþ1ðni; yÞ; y 2 ½�1;1�,
in terms of qlðyÞ; l ¼ 0; . . . ;N, by solving a linear system of the form (2.11). It follows from the discussion following
(2.11) that the cost of solving all linear systems corresponding to (3.8) and (3.9) is OðN2 log NÞ assuming that a fixed num-
ber of iterations of the preconditioned BICGSTAB (independent of s and N; cf. [11]) will be sufficient to preserve the sec-
ond order accuracy in time and the spectral accuracy in space. (When computing the representations of
Unþ1=2ðx; njÞ; x 2 ½�1;1�, and Unþ1ðni; yÞ; y 2 ½�1;1�, the representations of Un�1=2ðx; njÞ; x 2 ½�1;1�, and Unðni; yÞ;
y 2 ½�1;1�, can be used for selecting an initial guess in the preconditioned BICGSTAB method.) It follows from our discus-
sion that the cost of one step of the CN ADI scheme is OðN2 log NÞ. At the last time level, at a cost of OðN2 log NÞ, the rep-
resentations of UMð�1; yÞ; UMðni; yÞ; i ¼ 1; . . . ;N � 1; UMð1; yÞ; y 2 ½�1;1�, in terms of qlðyÞ; l ¼ 0; . . . ;N, are converted into
the representation of UMðx; yÞ in terms of qkðxÞqlðyÞ; k; l ¼ 0; . . . ;N.

4. LM ADI scheme

The second order accurate in time LM ADI scheme (cf. (4.25) in [3] and (6.18) in [12]) consists of finding
Un 2 PN � PN; n ¼ 2; . . . ;M, such that for n ¼ 1; . . . ;M � 1
~@tU
n þ Ln

1 þ Ln
2

� �
Un � kD@2

t Un þ 2k2s @4

@x2@y2 @
2
t Un

 !
ðnÞ ¼ f nðnÞ; n 2 G � G; ð4:1Þ
where the stability parameter k > 0 is to be selected and where U0;U1 2 PN � PN; Unj@X; n ¼ 2; . . . ;M, are assumed to be gi-
ven. Clearly U0 and Unj@X; n ¼ 2; . . . ;M, can be determined using (3.4) and (3.5), respectively. In this paper, we select U1

using one step of the CN ADI scheme (3.1)–(3.3). (In the context of the finite element Galerkin discretization, an alternative
method for selecting U1 is discussed in [12] on pp. 245–247.)

Since fqkðxÞg
N
k¼0 is a basis for PN , we have
Unðx; yÞ ¼
XN

k¼0

XN

l¼0

un
k;lqkðxÞqlðyÞ; n ¼ 0; . . . ;N: ð4:2Þ
Hence finding Un; n ¼ 0; . . . ;M, is equivalent to computing the vectors
un ¼ un
0;0; . . . ;un

0;N; . . . ;un
N;0; . . . ; un

N;N

h iT
; n ¼ 0; . . . ;M:
The vector u0 is obtained using (3.4) and (3.5) with n ¼ 0 while the vector u1 is obtained using (3.8)–(3.10) with n ¼ 0 and
(3.5) with n ¼ 1. The Eq. (3.5) implies that
un
0;l; un

N;l; un
k;0; un

k;N ; l ¼ 0; . . . ;N; k ¼ 1; . . . ;N � 1; n ¼ 2; . . . ;M; ð4:3Þ
are known. For each n ¼ 1; . . . ;M � 1, the remaining entries of the vector unþ1 are obtained from (4.1) by solving the linear
system
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eB � eB unþ1 � un�1

2s
þ k½eA � eB þ eB � eA þ 2kseA � eA�ðunþ1 � 2un þ un�1Þ ¼ ~fn; ð4:4Þ
where
~fn ¼ fn � Dða1ÞeA � eB þ Dðb1ÞeC � eB þ DðcÞeB � eB þ Dða2ÞeB � eA þ Dðb2ÞeB � eCh i
un; ð4:5Þ

fn ¼ f n
1;1; . . . ; f n

1;N�1; . . . ; f n
N�1;1; . . . ; f n

N�1;N�1

h iT
; f n

i;j ¼ f nðni; njÞ;
eA; eB; eC are defined in (2.6), and DðgÞ is a diagonal matrix with its diagonal entries equal to the values of g at the collocation
points ðni; njÞ; i; j ¼ 1; . . . ;N. Since
eA � eB ¼ ðeA � IN�1ÞðINþ1 � eBÞ;

the computation of eA � eBun involves N þ 1 multiplications by eB and N � 1 multiplications by eA. We introduce
vn ¼ un � un�1; n ¼ 1; . . . ;M; zn ¼ vn � vn�1; n ¼ 2; . . . ;M: ð4:6Þ
Then
vnþ1 ¼ vn þ znþ1; unþ1 ¼ un þ vnþ1; n ¼ 1; . . . ;M: ð4:7Þ
Subtracting and adding 2vn to unþ1 � un�1 in the first term of (4.4), multiplying through by 2s, and using (4.6), we obtain
eB � eB þ 2ksðeA � eB þ eB � eAÞ þ 4k2s2eA � eAh i
znþ1 ¼ 2s~fn � 2eB � eBvn; ð4:8Þ
for n ¼ 1; . . . ;N � 1. Note that the left-hand side of (4.8) factors out to yield
ðeB þ 2kseAÞ � ðeB þ 2kseAÞznþ1 ¼ 2s~fn � 2eB � eBvn: ð4:9Þ
In the remaining part of this section we give more details for Chebyshev spectral collocation. (For Legendre spectral collo-
cation the term log N is to be replaced with N.) For each n ¼ 1; . . . ;M � 1, we first compute ~fn using (4.5). Since FFTs can be
used to multiply a vector by A; B, and C, the cost of computing ~fn is OðN2 log NÞ. Then we compute the right-hand side of (4.9)
and solve (4.9) for znþ1. (Note that the multiplication of vn by eB � eB on the right-hand side in (4.9) can be avoided since it
follows from (4.6) that eB � eBvn ¼ un

B � un�1
B , where un

B ¼ eB � eBun is obtained when computing ~fn of (4.5).) Let
zn ¼ zn
0;0; . . . ; zn

0;N; . . . ; zn
N;0; . . . ; zn

N;N

h iT
; n ¼ 2; . . . ;M:
Then it follows from (4.6) and (4.3) that
zn
0;l; zn

N;l; zn
k;0; zn

k;N; l ¼ 0; . . . ;N; k ¼ 1; . . . ;N � 1; n ¼ 2; . . . ;M;
are known. Moreover, since
ðeB þ 2kseAÞ � ðeB þ 2kseAÞ ¼ ½ðeB þ 2kseAÞ � IN�1�½INþ1 � ðeB þ 2kseAÞ�;

the discussion following (2.8) implies that solving (4.9) for znþ1 involves solving N � 1 systems with the matrix B0 þ 2ksA0 and
solving N þ 1 systems with the matrix B0 þ 2ksA0. According to the discussion following (2.10) any such system can be solved
in a direct way at a cost OðN log NÞ and hence the cost of solving (4.9) for znþ1 is OðN2 log NÞ. Finally we use (4.7) to obtain vnþ1

and unþ1. Clearly, the cost of one step of the scheme is OðN2 log NÞ.
In comparison to the CN ADI method, the LM ADI method does not involve the iterative solution of systems of the form

(2.11). However, in contrast to the LM ADI method, the CN ADI scheme does not require a selection of a stability parameter.

5. Convergence analysis for the heat equation

Assume
L1u ¼ �uxx; L2u ¼ �uyy; g2 ¼ 0; ð5:1Þ
in (1.1) and (1.3), respectively. Let fnigN
i¼0 and fwigN

i¼0 be the nodes and weights, respectively, of the ðN þ 1Þ-point Legendre
Gauss–Lobatto quadrature for ½�1;1�, and let the discrete and continuous inner products and norms be defined by
ðv ; zÞN ¼
XN�1

i¼1

XN�1

j¼1

wiwjðvzÞðni; njÞ; kvk2
N ¼ ðv; vÞN; v; z 2 P0

N � P0
N ;

ðv ; zÞ ¼
Z

X
vzdX; kvk2 ¼ ðv ;vÞ; v ; z 2 L2ðXÞ:
For a positive integer s; k � ks denotes the standard norm in HsðXÞ.
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In our analysis, we assume that the exact solution u of (1.1)–(1.6) is sufficiently smooth. In what follows, c denotes a gen-
eric positive constant independent of N and s.

5.1. The CN ADI scheme

Using (5.1) it can be shown that the CN ADI scheme defined by (3.1), (3.3), and (3.5) is equivalent to: Find
Un 2 P0

N � P0
N; n ¼ 1; . . . ;M, such that for n ¼ 0; . . . ;M � 1
1
s
ðUnþ1 � UnÞ � 1

2
DðUnþ1 þ UnÞ þ s

4
@4

@x2@y2 ðU
nþ1 � UnÞ

" #
ðnÞ ¼ f nþ1=2ðnÞ; n 2 G � G; ð5:2Þ
where U0 in P0
N � P0

N is given. Since the ðN þ 1Þ-point Legendre Gauss–Lobatto quadrature is exact for polynomials of degree
6 2N � 1, it follows that (5.2) is equivalent to
1
s ðU

nþ1 � Un;vÞN �
1
2
ðDðUnþ1 þ UnÞ;vÞN þ

s
4

@4

@x2@y2 ðU
nþ1 � UnÞ;v

 !
¼ ðf nþ1=2; vÞN; v 2 P0

N � P0
N: ð5:3Þ
For t 2 ½0; T�, the comparison function Wð�; tÞ 2 P0
N � P0

N is defined by
�DWðn; tÞ ¼ �Duðn; tÞ; n 2 G � G: ð5:4Þ
We introduce
g ¼ u�W; t 2 ½0; T�; hn ¼ Un �Wn; n ¼ 0; . . . ;M: ð5:5Þ
Using Theorems 15.3 and 15.4 in [2], we have
kgk1 6 c N1�skuks þ N�rkDukr
� �

; t 2 ½0; T�; ð5:6Þ

@kg
@tk

�����
����� 6 c N�s @ku

@tk

�����
�����

s

þ N�r D
@ku
@tk

�����
�����

r

 !
; t 2 ½0; T�; k ¼ 0;1: ð5:7Þ
For v 2 P0
N � P0

N , using (5.5), (5.3), (3.2), (1.1), (5.1), (5.4), and (5.5), we obtain
1
s

hnþ1 � hn;v
� �

N �
1
2

Dðhnþ1 þ hnÞ;v
� �

N þ
s
4

@4

@x2@y2 ðh
nþ1 � hnÞ;v

 !

¼ ðf nþ1=2;vÞN �
1
s
ðWnþ1 �Wn;vÞN þ

1
2
ðDðWnþ1 þWnÞ;vÞN �

s
4

@4

@x2@y2 ðW
nþ1 �WnÞ; v

 !

¼ 1
2

unþ1
t þ un

t ;v
� �

N �
1
s
ðWnþ1 �Wn;vÞN �

s
4

@4

@x2@y2 ðW
nþ1 �WnÞ; v

 !
¼
X4

i¼1

In
i ; ð5:8Þ
where
In
1 ¼

unþ1
t þ un

t

2
� 1

s
ðunþ1 � unÞ;v

	 

N

; In
2 ¼

1
s

gnþ1 � gn;v
� �

N;

In
3 ¼ �

s
4

@4

@x2@y2 ðu
nþ1 � unÞ;v

 !
; In

4 ¼
s
4

@4

@x2@y2 ðg
nþ1 � gnÞ;v

 !
:

Using the Cauchy–Schwarz inequality and
kvk 6 kvkN 6 ckvk; v 2 P0
N � P0

N; ð5:9Þ
which is (4.5.41) in [18], we have
In
1 6 cs2kvkN; In

3 6 cs2kvkN; ð5:10Þ

In
2 6

1
s
kgnþ1 � gnkNkvkN; In

4 6 cs @4

@x2@y2 ðg
nþ1 � gnÞ

�����
�����kvkN: ð5:11Þ
In the following IN denotes the interpolating operator associated with the Gauss–Lobatto grid of Legendre type (see (14.7) in
[2]). Since gnþ1 � gn ¼

R tnþ1
tn

gt dt, using k
R tnþ1

tn
gt dtkN 6

R tnþ1
tn
kgtkN dt, (5.5) and (5.9), the triangle inequality, Theorem 14.2 in

[2], and (5.7), we have
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kgnþ1 � gnkN 6

Z tnþ1

tn

kgtkN dt ¼
Z tnþ1

tn

kINut �WtkN dt 6 c
Z tnþ1

tn

kINut �Wtkdt

6 c
Z tnþ1

tn

kut � INutkdt þ c
Z tnþ1

tn

kut �Wtkdt 6 cN�s
Z tnþ1

tn

kutks dt þ cN�r
Z tnþ1

tn

kDutkr dt

6 csðN�s þ N�rÞ: ð5:12Þ
Hence (5.11) and (5.12) yield
In
2 6 cðN�s þ N�rÞkvkN: ð5:13Þ
In a similar way, we obtain
@4

@x2@y2 ðg
nþ1 � gnÞ

�����
����� ¼

Z tnþ1

tn

@4gt

@x2@y2 dt

�����
����� 6

Z tnþ1

tn

@4gt

@x2@y2

�����
�����dt: ð5:14Þ
It follows from Theorem 7.4 in [2] that for t 2 ½0; T� there is p in PN � PN , depending on t, such that
kut � pk 6 cN�skutks;
@4ðut � pÞ
@x2@y2

�����
����� 6 cN4�skutks; t 2 ½0; T�: ð5:15Þ
Using repeatedly the inverse inequality
j/jH1 ½�1;1� 6 cN2k/kL2 ½�1;1�; / 2 PN; ð5:16Þ
(see (5.2) in [2]), the triangle inequality, (5.5), (5.7), and (5.15), we have
@4ðWt � pÞ
@x2@y2

�����
����� 6 cN8kWt � pk 6 cN8kgtk þ cN8kut � pk 6 cN8�skutks þ cN8�rkDutks; t 2 ½0; T�: ð5:17Þ
Using (5.5), the triangle inequality, (5.15) and (5.17), and assuming that s P 8 and r P 8, we obtain
@4gt

@x2@y2

�����
����� 6 @4ðut � pÞ

@x2@y2

�����
�����þ @4ðWt � pÞ

@x2@y2

�����
����� 6 c; t 2 ½0; T�: ð5:18Þ
Hence (5.11), (5.14), and (5.18) yield
I4 6 cs2kvkN: ð5:19Þ
Taking v ¼ ðhnþ1 � hnÞ=s in (5.8), using
ð�Dw; zÞN ¼ ðw;�DzÞN w; z 2 P0
N � P0

N; ð5:20Þ
which follows from (6.2.23) in [18], and using
@4v
@x2@y2 ;v

 !
¼ @3v

@x@y2 ;
@v
@x

 !
¼ @2v

@x@y
;
@2v
@x@y

 !
P 0;
which is derived by integration by parts, we have
kvk2
N �

1
2s

Dhnþ1; hnþ1� �
N � Dhn; hnð ÞN

� �
6

X4

i¼1

In
i :
It follows from the above inequality, (5.10), (5.13) and (5.19), and the � inequality
ab 6 �a2 þ 1
4�

b2; a;b 2 R; � > 0; ð5:21Þ
that
� Dhnþ1; hnþ1� �
N þ Dhn; hnð ÞN 6 csðs4 þ N�2s þ N�2rÞ; n ¼ 0; . . . ;M � 1:
Summing the last inequality for n ¼ 0; . . . ; k� 1, where 1 6 k 6 M, and then replacing k with n, we obtain
� Dhn; hnð ÞN 6 � Dh0; h0� �
N þ cnsðs4 þ N�2s þ N�2rÞ; n ¼ 0; . . . ;M: ð5:22Þ
It follows from (6.2.26) in [18] and Poincaré’s inequality that
ckzk2
1 6 �ðDz; zÞN 6 ckzk2

1; z 2 P0
N � P0

N : ð5:23Þ
For U0 ¼W0, which along with (5.5) gives h0 ¼ 0, (5.22) and (5.23) imply
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khnk2
1 6 cnsðs4 þ N�2s þ N�2rÞ; n ¼ 0; . . . ;M: ð5:24Þ
Since un � Un ¼ gn � hn by (5.5), it follows from the triangle inequality, (5.6), (5.7), and (5.24) that
kun � Unk1 6 cðs2 þ N1�s þ N�rÞ; n ¼ 0; . . . ;M; ð5:25Þ
and
kun � Unk 6 cðs2 þ N�s þ N�rÞ; n ¼ 0; . . . ;M;
which proves the second order accuracy in time in the discrete maximum norm and the spectral accuracy in space in the H1

and L2 norms of the CN ADI Legendre spectral collocation scheme.
For U0 defined by (3.4), using (1.2), we have U0 ¼ INu0. Hence it follows from (5.23), the triangle inequality, (5.5), The-

orem 14.2 in [2], and (5.6) that
� Dh0; h0� �
N 6 ckh0k2

1 6 c ku0 � INu0k2
1 þ kg0k2

1

� �
6 cðN2�2s þ N�2rÞ:
This and (5.22) lead to (5.24) with N�2s replaced by N2�2s and then to (5.25).
The presented convergence analysis of the CN ADI Legendre spectral collocation scheme for the heat equation does not

seem to be directly applicable to the CN ADI Chebyshev spectral collocation scheme. One of the main difficulties is that
(5.20) is invalid for the discrete inner product ð�; �ÞN induced by the nodes and weights of the ðN þ 1Þ-point Chebyshev
Gauss–Lobatto quadrature on ½�1;1�. Moreover, it is not known to the authors of this paper if the Legendre spectral
collocation results, like (5.6), (5.7), or Theorem 14.2 in [2], have their corresponding counterparts in the case of Chebyshev
spectral collocation. For both, the Legendre and Chebyshev CN ADI spectral collocation schemes, the situation is even more
complicated in the case of variable coefficient problems. For elliptic variable coefficient problems, the convergence analysis
is usually given for a spectral Galerkin method with numerical integration rather than for a spectral collocation method (see,
for example, Section 15 in [2]). However, it is well-known that these two methods are not equivalent for variable coefficient
problems.

5.2. The LM ADI scheme

By (5.1), the scheme (4.1) is equivalent to: Find Un 2 P0
N � P0

N; n ¼ 2; . . . ;M, such that for n ¼ 1; . . . ;M � 1
~@tU
n � DUn � kD@2

t Un þ 2k2s @4

@x2@y2 @
2
t Un;v

 !
N

¼ ðf n;vÞN; v 2 P0
N � P0

N; ð5:26Þ
where U0;U1 in P0
N � P0

N are given. Since the ðN þ 1Þ-point Legendre Gauss–Lobatto quadrature is exact for polynomials of
degree 6 2N � 1, it follows that (5.26) is equivalent to
~@tU
n; v

� �
N
� DUn;vð ÞN � k D@2

t Un;v
� �

N þ 2k2s @4

@x2@y2 @
2
t Un;v

 !
¼ ðf n;vÞN ; v 2 P0

N � P0
N : ð5:27Þ
Assume that, for t 2 ½0; T�, the comparison function Wð�; tÞ 2 P0
N � P0

N is defined by (5.4) and that g and hn are defined in (5.5).
For v 2 P0

N � P0
N , using (5.5), (5.27), (1.1), (5.1), (5.4), and (5.5), we obtain
~@th
n;v

� �
N
� ðDhn; vÞN � k D@2

t h
n;v

� �
N þ 2k2s @4

@x2@y2 @
2
t h

n; v
 !

¼ ðf n;vÞN � ~@tW
n; v

� �
N
þ ðDWn;vÞN þ k D@2

t Wn;v
� �

N � 2k2s @4

@x2@y2 @
2
t Wn;v

 !

¼ ðun
t ; vÞN � ~@tW

n;v
� �

N
þ k D@2

t un;v
� �

N � 2k2s @4

@x2@y2 @
2
t Wn; v

 !
¼
X5

i¼1

In
i ; ð5:28Þ
where
In
1 ¼ un

t � ~@tun; v
� �

N
; In

2 ¼ ~@tgn;v
� �

N
; In

3 ¼ k D@2
t un;v

� �
N;

In
4 ¼ �2k2s @4

@x2@y2 @
2
t un; v

 !
; In

5 ¼ 2k2s @4

@x2@y2 @
2
t g

n;v
 !

:

Using the Cauchy–Schwarz inequality and (5.9), we have
In
1; I

n
3 6 cs2kvkN; In

4 6 cs3kvkN ; ð5:29Þ

In
2 6 k ~@tgnkNkvkN; In

5 6 cs @4

@x2@y2 @
2
t g

n

�����
�����kvkN :
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Since gnþ1 � gn�1 ¼
R tnþ1

tn�1
gt dt, derivations similar to those in (5.12) and (5.13) yield
In
2 6 cðN�s þ N�rÞkvkN: ð5:30Þ
To bound In
5 we use (see the last unnumbered equation on p. 548 in [9])
@2
t g

n ¼
Z tnþ1

tn�1

ðs� js� tnjÞgtt ds;
to obtain (cf. (5.14))
@4

@x2@y2 @
2
t g

n

�����
����� 6

Z tnþ1

tn�1

ðs� js� tnjÞ
@4gtt

@x2@y2 ds

�����
����� 6 cs

Z tnþ1

tn�1

@4gtt

@x2@y2

�����
�����ds:
Hence derivations similar to those in (5.15)–(5.19) yield
I5 6 cs3kvkN: ð5:31Þ
Taking v ¼ ~@th
n in (5.28), we have
k ~@th
nk2

N þ ð2k� 1Þ Dhn; ~@th
n

� �
N
� k Dhnþ1 þ Dhn�1; ~@th

n
� �

N
þ 2k2s @4

@x2@y2 @
2
t h

n; ~@th
n

 !
¼
X5

i¼1

In
i ;

n ¼ 1; . . . ;M � 1; ð5:32Þ
It follows from (5.20) that
k Dhnþ1 þ Dhn�1; ~@th
n

� �
N
¼ k

2s
Dhnþ1; hnþ1� �

N � Dhn�1; hn�1� �
N

� �
: ð5:33Þ
Integrating by parts and expressing @2
t /

n and ~@t/
n in terms of @t/

n and @t/
n�1, we have
2k2s @4

@x2@y2 @
2
t h

n; ~@th
n

 !
¼ 2k2s @2

@x@y
@2

t h
n;

@2

@x@y
~@th

n

 !

¼ k2 @2

@x@y
@th

n � @2

@x@y
@th

n�1;
@2

@x@y
@th

n þ @2

@x@y
@th

n�1

 !

¼ k2 @2

@x@y
@th

n

�����
�����

2

� @2

@x@y
@th

n�1

�����
�����

2
0@ 1A: ð5:34Þ
Substituting (5.33) and (5.34) into (5.32), using (5.29), (5.30), (5.31), (5.21), and multiplying through by 2s, we obtain
ð2k� 1Þ Dhn; hnþ1 � hn�1� �
N þ k Dhn�1; hn�1� �

N � Dhnþ1; hnþ1� �
N

� �
þ 2k2s @2

@x@y
@th

n

�����
�����

2

� @2

@x@y
@th

n�1

�����
�����

2
0@ 1A

6 csðs4 þ N�2s þ N�2rÞ; n ¼ 1; . . . ;M � 1:
Summing both sides of this inequality for n ¼ 1; . . . ; q� 1, where 2 6 q 6 M, and dropping the nonnegative term

2k2s @2

@x@y
@th

q�1

�����
�����

2

on the left-hand side, we obtain
ð2k� 1ÞS1 þ kS2 6 c s4 þ N�2s þ N�2r þ s @2

@x@y
@th

0

�����
�����

2
0@ 1A; q ¼ 2; . . . ;M; ð5:35Þ
where, from (5.20),
S1 ¼
Xq�1

n¼1

Dhn; hnþ1 � hn�1� �
N ¼

Xq

n¼2

Dhn�1; hn� �
N �

Xq�1

n¼1

Dhn�1; hn� �
N

¼ Dhq�1; hq� �
N � Dh0; h1� �

N ; ð5:36Þ

S2 ¼
Xq�1

n¼1

ðDhn�1; hn�1ÞN � ðDhnþ1; hnþ1ÞN
� �

¼
Xq�2

n¼0

ðDhn; hnÞN �
Xq

n¼2

ðDhn; hnÞN

¼
X1

n¼0

ðDhn; hnÞN �
Xq

n¼q�1

ðDhn; hnÞN: ð5:37Þ
Since ð�Dw; zÞN is an inner product on P0
N � P0

N , the Cauchy–Schwarz inequality and (5.21) yield
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Dhq�1; hq� �
N

�� �� 6 �Dhq�1; hq�1� �1=2

N �Dhq; hqð Þ1=2
N 6

1
2

Xq

n¼q�1

�Dhn; hnð ÞN: ð5:38Þ
We assume that k > 1=4 and set a ¼ ð1=2Þj2� 1=kj. Then a 2 ½0;1Þ and it follows from (5.38) that
ð2� 1=kÞ Dhq�1; hq� �
N

�� �� 6 a
Xq

n¼q�1

�Dhn; hnð ÞN:
Hence
ð2k� 1Þ Dhq�1; hq� �
N � k

Xq

n¼q�1

ðDhn; hnÞN P kð1� aÞ
Xq

n¼q�1

ð�Dhn; hnÞN : ð5:39Þ
Using (5.35)–(5.37), and (5.39), we obtain
Xq

n¼q�1

ð�Dhn; hnÞN 6 c s4 þ N�2s þ N�2r þ s @2

@x@y
@th

0

�����
�����

2

þ
X1

n¼0

ð�Dhn; hnÞN

0@ 1A;

for q ¼ 2; . . . ;M. Assuming that U0 ¼W0 and using the last inequality, (5.23), and replacing q with n, we have
khnk2
1 6 c s4 þ N�2s þ N�2r þ kh1k2

1 þ s @2h1

@x@y

�����
�����

2
0@ 1A; n ¼ 2; . . . ;M: ð5:40Þ
If U1 is obtained using l steps of the CN ADI scheme with stepsize s=l, then (5.24) implies that
kh1k2
1 6 cs½ðs=lÞ4 þ N�2s þ N�2r�:
Using (5.16) and the above inequality, we have
s @2h1

@x@y

�����
�����

2

6 csN4kh1k2
1 6 cs2N2½N2ðs=lÞ4 þ N2�2s þ N2�2r�:
So if s 6 1=N and l P
ffiffiffiffi
N
p

, the last two inequalities give
kh1k2
1 þ s @2h1

@x@y

�����
�����

2

6 cðs4 þ N2�2s þ N2�2rÞ;
and hence, on using also (5.40) and h0 ¼ 0, we obtain
khnk1 6 cðs2 þ N1�s þ N1�rÞ; n ¼ 0; . . . ;M: ð5:41Þ
Since un � Un ¼ gn � hn by (5.5), it follows from the triangle inequality, (5.6), and (5.41) that
kun � Unk1 6 cðs2 þ N1�s þ N1�rÞ; n ¼ 0; . . . ;M;
which proves the second order accuracy in time in the discrete maximum norm and the spectral accuracy in space in the H1

norm of the LM ADI Legendre spectral collocation scheme.

6. Numerical results

In our numerical tests we considered the problem (1.1)–(1.6) with T ¼ 1 and
a1ðx; y; tÞ ¼ ð1þ x2 þ y2 þ t2Þ=4; b1ðx; y; tÞ ¼ �ð1=6Þ cosðxþ yþ tÞ;
a2ðx; y; tÞ ¼ ð1=4Þ sinðxþ yÞ þ ðt þ 4Þ=3; b2ðx; y; tÞ ¼ ð1=5Þexþyþt;

cðx; y; tÞ ¼ � logðxþ yþ t þ 3Þ:
The functions f ; g1 and g2 in (1.1)–(1.3) were selected so that
uðx; y; tÞ ¼ exþyþt ;
was the exact solution of the problem.
In all our computations, carried out in double precision, we used the CN ADI and LM ADI Chebyshev spectral collocation

schemes with the same N ¼ 24 and various values Mk of M. We used (3.4) and (3.5) to obtain U0 and Unj@X; n ¼ 1; . . . ;Mk, and
we also used one step of the CN ADI scheme with sk ¼ 1=Mk to obtain U1 for the LM ADI scheme. In each step of the CN ADI
scheme, the linear systems of the form (2.12) resulting from (3.8) and (3.9) (see the discussion in Section 3) were solved
using six iterations of the preconditioned BICGSTAB method with the zero vector as an initial guess. In the case of variable



Table 1
Errors and convergence rates.

Mk CN ADI CN ADI M LM ADI

Error Rate Error Rate Error Rate

8 9.063–03 5.101–02 1.326–02
16 2.354–03 1.945 2.000–02 1.351 3.441–03 1.946
32 5.946–04 1.985 6.203–03 1.689 8.755–04 1.975
64 1.490–04 1.996 1.764–03 1.814 2.209–04 1.987
128 3.729–05 1.999 4.528–04 1.962 5.549–05 1.993
256 9.325–06 2.000 1.137–04 1.994 1.391–05 1.996
512 2.332–06 2.000 2.845–05 1.999 3.481–06 1.998
1024 5.828–07 2.000 7.113–06 2.000 8.707–07 1.999

B. Bialecki, J. de Frutos / Journal of Computational Physics 229 (2010) 5182–5193 5193
coefficients, the stability parameter k in the LM ADI finite element Galerkin method is selected so that k > amax=4 (see
Theorem 6.2 in [12]). For our example, we used k ¼ 1=2.

To verify the second order accuracy in t, we computed the convergence rates using the formula
Convergence rate � logðerrork=errorkþ1Þ
logðsk=skþ1Þ

;

where
errork ¼ max
16i;j6N�1

Uðni; nj;1Þ � UMkðni; njÞ
��� ���:
In Table 1, CN ADI M refers to the modification of the CN ADI scheme in which the correction term ðs=4ÞLnþ1=2
2 ðUnþ1 � UnÞ of

(3.3) is dropped. The results presented in Table 1 confirm that all three schemes are second order accurate in time.
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